New Orleans Municipal Yacht Harbor

Environmental Conditions and Wave Modeling

Creative People, Practical Solutions.®

601 Poydras St., Suite 1860 New Orleans, LA, 70130 504-648-3560

1. Performance-based design

- Floating docks designed to withstand extreme (1% annual chance) storm
 - Can rise and fall with surge.
- Docks won't submerge during high water
 - Lets boats stay at berth
 - Reduces chance of boats striking sunken objects

2. Planning for the future

ENGTH

- Conservative, scientifically sound sea level rise and subsidence projections
- Future hurricane waves and surge based on HSDRRS project – most rigorous data available
- Pile caps (how high docks can rise with surge) are set at +22' NAVD88 – more than 10.5' higher than Katrina's high water mark at MYH

	n 	TOP OF PILE EL 22.00 FT NAVD
		EXTREME LOAD EL 20.00 FT NAVD
FLOATING DOCK		FEMA FLOOD EL 17.00 FT NAVD OPERATIONAL LOAD EL 15.00 FT NAVD
FLOATING DOCK		KATRINA MAX EL 11.50 FT NAVD
		MEAN HIGH WATER EL 0.29 FT NAVD
FLOATING DOCK		MEAN LOW WATER EL -0.22 FT NAVD

3. Data Sources

- Bathymetric surveys and geotechnical investigations
- 11-year NOAA tide gauge on site
- 20-year Wind records at Lakefront Airport

https://tidesandcurrents.noaa.gov/stationhome.html?id=8761927

- USACE HSDRRS Studies
- FEMA / US Army Corps high water marks from Katrina

4. Sea Level Rise

- Land subsidence rate of 7.5 mm/yr.
 - West Shore Lake Pontchartrain Hurricane and Storm Damage Risk Reduction Study (US Army Corps of Engineers, 2014).
- Global mean sea level rise rate of 1.7 mm/yr.
 - Intergovernmental Panel on Climate Change (IPCC, 2014)
- Projection equations, which account for **accelerated rates** of mean sea level rise and subsidence
 - Engineering Technical Letter 1100-2-1: Procedures to Evaluate Sea Level Change (US Army Corps of Engineers, 2014).

• Recommend using **Intermediate** value for design, while also assessing cost implications for accommodating **High** scenario

5. Operational and Extreme Wave Conditions

• Operational storms simulated in-house, based on wind records

 Design 100-year (1% annual chance) storm taken as US Army Corps' conservative 2057 event used in HSDRRS projects

Source: US Army Corps *Elevations for Design of Hurricane Protection Levees and Structures: Lake Pontchartrain and Vicinity... Appendix A* (2014)

5.1 Regional Wave Modeling

- Depth accurate computational grid, with high resolution at harbor
- Use of measured wind and water level to model waves offshore of harbor
- Statistical analysis of modeled waves to determine operational wave heights (1-yr through 50-yr Return Periods)

Local Mike21-BW Grid Extents Regional Mike21-SW Mesh

5.2 Local Wave Modeling

- Model propagation of offshore waves into harbor
 - Robust diffraction/reflection formulations
- Operational wave conditions
 - From statistical analysis of regional wave modeling
- Extreme wave conditions
 - 1% annual chance surge and wave conditions offshore of harbor (from USACE HSDRRS studies)

Local MIKE-21 BW Model Bathymetry

Zc_ft	-7.96.0
-15.414.0	-5.94.0
-13.912.0	-3.92.0
-11.910.0	-1.9 - 0.0
-9.98.0	Land

5.3 Extreme Modeling Results

Robust diffraction-reflection formulation

Accurate simulation of waves penetrating harbor and reflecting within

High-confidence dock design

5.4 Extreme Modeling Results

Extreme 100-yr RP Conditons: Maximum from All Incedent Directions: Hs = 8.2 ft, Tp = 7.2 s

Hs [ft]	3.1 - 3.2	
2.4 - 2.7	3.3 - 3.5	
2.8 - 3.0	3.6 - 3.8	

6. Conclusions

- Safer harbor with floating docks
- Planned for the future with high conservatism
- Modeled with accurate data and state-of-the-art tools

Questions or comments?

moffatt & nichol

Creative People, Practical Solutions.®

THANK YOU!

moffattnichol.com